Domanda:
matematica'?
anonymous
2008-04-04 11:39:49 UTC
Sto facendo degli studi sulla matematica e sulla fisica e non mi riesco a spiegare perkè la matematica è così!!Mi spiego:i numeri sono infiniti perkè?? Ki ha inventato la matematica perkè Es. 4+4=8 perkè?? Velo siete kiesti mai???????????
Sei risposte:
anonymous
2008-04-04 11:44:54 UTC
xk sn stati dati dei nomi convenzionale alle quantità...se una quantità vale uno allora quattro quantità valgono quattro..e se a queste 4 quanittà aggiungi 4 e le conti sono 8....eheheh..è tutto sulla base delle convenzioni..

sn state date x evitare fraintendimenti all'interno della comunità e sn internazionali x capirsi..
nietzschina
2008-04-04 11:47:54 UTC
prendi 4 pere e le metti insieme ad altre 4 pere..

quante pere hai?? semplicemente 8



e poi..l'infinito?beh è un concetto astratto che nasce dalla ricerca dei pitagorici di trovare la radice di 2..

l'infinito nasce con i numeri irrazionali..

baci
anonymous
2008-04-04 11:43:58 UTC
aboliamole come materie
anonymous
2008-04-04 12:09:51 UTC
la matematica è tt 1 convenzione k xò serve moltissimo xk c'è dappertutto... nn so ki l'ha inventata ma so di x certo k se nn ci fosse ora nn potrei scrivere a qst computer
Antò!!!
2008-04-05 04:45:32 UTC
La parola matematica deriva dal greco μάθημα (máthema), traducibile con i termini "scienza", "conoscenza" o "apprendimento"; μαθηματικός (mathematikós) significa "incline ad apprendere".



Con questo termine generalmente si designa la disciplina (ed il relativo corpo di conoscenze) che studia problemi concernenti quantità, estensioni e figure spaziali, movimenti di corpi, e tutte le strutture che permettono di trattare questi aspetti in modo generale. La matematica fa largo uso degli strumenti della logica e sviluppa le proprie conoscenze nel quadro di sistemi ipotetico-deduttivi che, a partire da definizioni rigorose e da assiomi riguardanti proprietà degli oggetti definiti (risultati da un procedimento di astrazione, come triangoli, funzioni, vettori ecc.), raggiunge nuove certezze, per mezzo delle dimostrazioni, attorno a proprietà meno intuitive degli oggetti stessi (espresse dai teoremi).



La potenza e la generalità dei risultati della matematica le ha reso l'appellativo di regina delle scienze: ogni disciplina scientifica o tecnica, dalla fisica all'ingegneria, dall'economia all'informatica, fa largo uso degli strumenti di analisi, di calcolo e di modellizzazione offerti dalla matematica.







Evoluzione e finalità della matematica [modifica]

Per approfondire, vedi la voce Storia della matematica.

Papiro egiziano che tratta di matematicaLa matematica ha una lunga tradizione presso tutti i popoli; è stata la prima disciplina a dotarsi di metodi di elevato rigore e portata, e quindi a raggiungere lo status di scienza; ha progressivamente ampliato gli argomenti della sua indagine e progressivamente ha esteso i settori ai quali può fornire aiuti computazionali e di modellizzazione. È significativo che in talune lingue e in talune situazioni al termine singolare si preferisce il plurale matematiche.



Nel corso della sua lunga storia e nei diversi ambienti culturali si sono avuti periodi di grandi progressi e periodi di stagnazione degli studi. Questo in parte è dovuto all'importanza dei singoli personaggi capaci di dare apporti profondamente innovativi e illuminanti e di stimolare all'indagine matematica grazie alle loro doti didattiche. Si sono avuti anche periodi di arretramento delle conoscenze e dei metodi: questi però si sono riscontrati solo in relazione a eventi distruttivi o a periodi di decadenza complessiva della vita intellettuale e civile. Nella storia della matematica degli ultimi 500 anni, in relazione al miglioramento dei mezzi di comunicazione è comunque prevalsa la crescita progressiva del patrimonio di risultati e di metodi.



Questo è dovuto alla natura stessa delle attività matematiche. Esse sono costantemente tese alla esposizione precisa dei problemi e delle soluzioni e questo impone di comunicare avendo come fine ultimo la possibilità di chiarire tutti i dettagli delle costruzioni logiche e dei risultati (alcuni chiarimenti richiedono un impegno non trascurabile, talora molti decenni). Questo ha corrisposto alla definizione di un linguaggio per molti aspetti esemplare come strumento per la trasmissione e la sistemazione delle conoscenze. Sono quindi rari i casi di errori o di smagliature che non siano stati riconosciuti e corretti, o almeno segnalati ad alta voce come necessari di correzione, in tempi brevi.





Matematica teorica e applicata [modifica]

Teorema di Pitagora in uno scritto cinese datato tra il 200 a.C. e il 500 a.C., questo teorema ha importanti ricadute pratiche e teoricheLe'attività matematiche sono naturalmente interessate alle possibili generalizzazioni e astrazioni, in relazione alle economie di pensiero e ai miglioramenti degli strumenti (in particolare degli strumenti di calcolo) che esse sono portate a realizzare. Le generalizzazioni e le astrazioni quindi spesso conducono a visioni più approfondite dei problemi e stabiliscono rilevanti sinergie tra progetti di indagine inizialmente rivolti ad obiettivi non collegati.



Nel corso dello sviluppo della matematica si possono rilevare periodi ed ambienti nei quali prevalgono alternativamente atteggiamenti generali e valori riconducibili a due differenti generi di motivazioni e di approcci: le motivazioni applicative, con la loro spinta a individuare procedimenti efficaci, e le esigenze di sistemazione concettuale con la loro sollecitazione verso generalizzazioni, astrazioni e panoramiche strutturali.



Si tratta di due generi di atteggiamenti tra i quali si costituisce una certa polarizzazione; questa talora può diventare contrapposizione, anche astiosa, ma in molte circostanze i due atteggiamenti stabiliscono rapporti di reciproco arricchimento e sviluppano sinergie. Nel lungo sviluppo della matematica si sono avuti periodi di prevalenza di uno o dell'altro dei due atteggiamenti e dei rispettivi sistemi di valori.



Del resto la stessa nascita della matematica può ragionevolmente ricondursi a due ordini di interessi: da un lato le esigenze applicative che fanno ricercare valutazioni praticabili; dall'altro la ricerca di verità tutt'altro che evidenti, forse tenute nascoste, che risponde ad esigenze immateriali, la cui natura può essere filosofica, religiosa o estetica.



Negli ultimi 30 o 40 anni tra i due atteggiamenti si riscontra un certo equilibrio non privo di tensioni riemergenti, ma con molteplici episodi di mutuo supporto. A questo stato di cose contribuisce non poco la crescita del mondo del computer, rispetto al quale il mondo della matematica presenta sia canali di collegamento (che è ormai assurdo cercare di interrompere) che differenze, ad esempio differenze dovute a diverse velocità di mutazione e a diversi stili comunicativi, che proiettano le due discipline agli antipodi.





Argomenti principali della matematica [modifica]

Cerchiamo ora di segnalare a grandi linee i temi oggetto della indagine matematica, illustrando una sorta di itinerario guidato per un progressivo accostamento delle problematiche, delle argomentazioni e delle sistemazioni teoriche.





Aritmetica [modifica]

Per approfondire, vedi la voce Aritmetica.



I primi problemi che inducono ad accostarsi alla matematica sono quelli che si possono affrontare con l'aritmetica elementare: si tratta di calcoli eseguibili con le quattro operazioni che possono riguardare contabilità finanziarie, valutazioni di grandezze geometriche o meccaniche, calcoli relativi agli oggetti ed alle tecniche che si incontrano nella vita quotidiana.



I più semplici di questi calcoli possono effettuarsi servendosi solo di numeri interi naturali, ma presto i problemi di calcolo richiedono di saper trattare i numeri interi relativi e i numeri razionali.





Algebra [modifica]

Per approfondire, vedi la voce Algebra.



I problemi aritmetici più semplici sono risolti mediante formule che forniscono risultati conseguenti. Ad esempio: l'area di un rettangolo con lati lunghi 3 e 5 è il loro prodotto . Complicando gli enunciati diventa necessario servirsi di equazioni. Ad esempio: per il Teorema di Pitagora, se un triangolo rettangolo ha i lati più corti (cateti) di lunghezza 3 e 4, quello più lungo (ipotenusa) ha come lunghezza il numero positivo x che risolve l'equazione:



.



Le equazioni più semplici sono le equazioni lineari, sia perché rappresentano le questioni geometriche più semplici, sia perché sono risolvibili con procedimenti standard.



Nelle formule e nelle equazioni conviene far entrare parametri i cui valori si lasciano indeterminati: in tal modo si viene a disporre di strumenti di portata più generale, che permettono di conseguire evidenti economie di pensiero. Ad esempio: in un triangolo rettangolo con cateti di lunghezza a e b, la lunghezza dell'ipotenusa è il numero positivo x tale che .



Per meglio valutare le formule e per risolvere molti tipi di equazioni si rende necessario sviluppare un calcolo letterale che permetta di rimaneggiarle. Le regole di questo calcolo letterale costituiscono la cosiddetta algebra elementare.





Geometria [modifica]

Per approfondire, vedi la voce Geometria.



Lo studio della geometria piana e spaziale riguarda inizialmente i seguenti oggetti primitivi: il punto, la retta, il piano. Combinando questi elementi nel piano o nello spazio si ottengono quindi altri oggetti quali segmenti, angoli, angoli solidi, poligoni e poliedri.



Punto, retta, piano e spazio hanno dimensione rispettivamente 0, 1, 2 e 3. Tramite il calcolo vettoriale si definiscono e studiano spazi a dimensione più alta (anche infinita!). Gli analoghi "curvi" di questi spazi "piatti" sono le curve e le superfici, di dimensione rispettivamente 1 e 2. Uno spazio curvo in dimensione arbitraria si chiama varietà. Dentro a questo spazio si possono spesso definire punti e rette (dette geodetiche), ma la geometria che ne consegue può non soddisfare gli assiomi di Euclide: una tale geometria è generalmente detta non euclidea. Un esempio è dato dalla superficie terrestre, che contiene triangoli aventi tutti e tre gli angoli retti!





Analisi [modifica]

Per approfondire, vedi la voce Analisi matematica.



Lo studio dell'analisi riguarda principalmente il calcolo infinitesimale, introduce la fondamentale nozione di limite, e quindi di derivata e integrale. Con questi strumenti vengono analizzati i comportamenti delle funzioni, che spesso non hanno una descrizione esplicita ma sono soluzioni di una equazione differenziale, derivante ad esempio da un problema fisico.





Settori della matematica [modifica]

Un abaco, un semplice mezzo di calcolo utilizzato fin dai tempi antichiCome riportato sopra, le discipline principali sviluppate all'interno della matematica sono nate dalla necessità di eseguire calcoli nel commercio, di capire i rapporti fra i numeri, di misurare la terra e di predire eventi astronomici. Questi quattr
LAMA AFFILATA
2008-04-04 11:45:37 UTC
no, xke ti piaceva VI+VI=VIII


Questo contenuto è stato originariamente pubblicato su Y! Answers, un sito di domande e risposte chiuso nel 2021.
Loading...